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STRENGTH-DEFORMATION CONSIDERATIONS 
OF AN INVOLUTE SHELL 

by 

A. H. Marchertas 

ABSTRACT 

An exploratory analysis is made of the behavior of a 
thin, cylindrical, involute shell subjected to a steady-state 
p ressu re and internal thermal gradients (which vary along 
the involute). Five theoretical approaches are adapted to 
the one-variable, involute shell problem, and solved explic­
itly for the dependent variables of internal loads and dis­
placements . Small-deflection theory is used throughout. 

Each approachwas used to solve two numerical prob­
lems, one involving uniform t ransverse p ressure imposed on 
the shell, and the other subjecting it to isothermal expansion. 
In both problems, three boundary conditions were employed; 
fixed, pinned, and what is refer red to as rotated edges. Quan­
titative differences between the respective solutions a re 
discussed. Similar comparisons are made with available 
experimental data. 

I. INTRODUCTION 

During the period from March 1962 t* September 1966, the fuel-
development program in support of the Argonne Advanced Research Reactor 
(AARR)' was focussed on a fully enriched UO^-stainless steel cermet flat-
plate core with an initial thermal output of 100 MW. In September 1966, a 
decision was made to revise the AARR concept to accommodate a graded 
U,08-aluminum cermet , involute plate core . This core had been developed 
at Oak Ridge National Laboratory (ORNL) for their High Flux Isotope Re­
actor (HFIR). 

Although the HFIR core was operational and performing satisfacto­
rily at ORNL, the AARR core-design group at Argonne had no previous 
experience with graded, involute fuel plates . Moreover, the s t ructural l imi­
tations of these plates under the adverse conditions anticipated m the AARR 
were unknown. Therefore, a s t ress -ana lys i s study was initiated, the p re ­
liminary stages and resul ts of which are described m this report . 

Open l i terature on s t r e s s analysis of involute shells is essentially 
nonexistent. Moreover, to this author 's knowledge, the only published work 
on involute fuel plates is predominantly experimentation performed in sup­
port of the HFIR core.^^ This lack of information is understandable since 
involute shapes are ra re ly encountered as s t ructural elements . Therefore . 



the analysis presented in this report pertains to a relatively simple involute 
shell problem and is based on small-deflection theory with one var iable , 
that i s , equilibrium conditions are established from the original shell geom­
etry and the loads made independent of the displacements during loading. 
Also, the loads can be expressed in te rms of integration constants to be 
evaluated from the boundary conditions. 

However, in the process of this simple analysis, it was observed that 
variations existed in the final load-displacement relationships, and even 
small-deflection theory with one variable did not provide a unique solution. 
Since simple explicit resultant equations can be derived for the relevant 
variables , five theoretical solutions were obtained for purposes of compar­
ison. The objectives here were; (1) to observe the typical variation between 
the different solutions, and (2) if appreciable, to select the most promising 
theory to be used in a more comprehensive analysis of the fuel plate. It was 
believed that more complicated problems should be analyzed only after the 
soundness of the simplest solution had been established. 

Thus the simple involute shell problem treated in this report does 
not imply a solution to the actual fuel plate. The environmental conditions 
and plate composition are much more complicated than has been considered 
here for the steady-state condition. However, the results afford a better 
understanding of the involute plate behavior in general . This then may be 
taken as the first step in the general s t ress analysis of the involute fuel plate. 

II. ANALYTICAL DEVELOPMENT 

OUTER CONTROL 
PLATE 

INNER 
CONTROL 
PLATE 

INNER FUEL 
ELEMENT 

OUTER FUEL 
ELEMENT 

Fig. 1. Partial Section of HFK Core Assembly 

A. D e s c r i p t i o n of HFIR 

The HFIR w a s d e s i g n e d p r i ­
m a r i l y to p r o d u c e t r a n s u r a n i u m 
i s o t o p e s for u s e in the USAEC 
h e a v y - e l e m e n t r e s e a r c h p r o g r a m . 
As shown in F i g . 1, t h e ' t a r g e t r o d s 
con ta in ing " ^ P u and o t h e r t r a n s u r a ­
n ium i s o t o p e s a r e p o s i t i o n e d v e r t i ­
ca l ly wi th in a 5 - i n . - d i a hole that 
f o r m s the c e n t e r of the r e a c t o r . 
Rad ia l ly o u t w a r d f r o m th i s h o l e , 
the r e a c t o r i s c o m p o s e d of two 
c o n c e n t r i c fuel e l e m e n t s ; two, th in , 
p o i s o n - b e a r i n g , c o n c e n t r i c c y l i n d e r s 
which s e r v e as c o n t r o l p l a t e s ; a con­
c e n t r i c b e r y l l i u m r e f l e c t o r ( a p p r o x i ­
m a t e l y I ft t h i ck ) ; and a w a t e r 
r e f l e c t o r of e f fec t ive ly infini te t h i c k ­
n e s s . In the ax ia l d i r e c t i o n , the 
r e a c t o r i s r e f l e c t e d b y , w a t e r . 



Fig. 2, Dimensional Chaiacteristics 
of HFIR Fuel Elements 

With r e f e r e n c e to the fuel r eg ion 
( see F i g . 2 ) t h e i n n e r e l e m e n t i s 5.067 in . 
in ID and 10.590 in . in OD; it con ta ins 
171 fuel p l a t e s . The o u t e r e l e m e n t i s 
11.250 in. in ID and 17.134 in. in OD; it 
c o n t a i n s 369 fuel p l a t e s . I n b o t h e l e m e n t s , 
the p l a t e s a r e 24 in. long (act ive length = 
20 in . ) and 0 .05 in . th ick ; they a r e bent in 
the s h a p e of an involu te and we lded to 
c i r c u l a r c y l i n d e r s to f o r m cons t an t 
0 . 0 5 - i n . - t h i c k coo lan t c h a n n e l s . Before 
b e n d i n g , the p l a t e s in the i n n e r fuel e l e ­
m e n t a r e a p p r o x i m a t e l y 3.6 in . wide and 
t h o s e in the o u t e r fuel e l e m e n t a r e a p ­
p r o x i m a t e l y 3.2 in. w i d e . As shown in 
F i g . 3, e a c h p l a t e i s of a s a n d w i c h - t y p e 
c o n s t r u c t i o n c o m p o s e d of UjOg-Al c e r ­
m e t fuel c lad wi th Type 6061 a l u m i n u m . 
To r e d u c e the r a d i a l p e a k - t o - a v e r a g e 
p o w e r dens i t y r a t i o , the fuel i s nonun i ­
f o r m l y loaded a long the a r c of the in ­

volute A b u r n a b l e p o i s o n is m c l u d e d in the i n n e r fuel e l e m e n t to " a t t e n 
h T e u t r o n flux furt 'her and to r e d u c e t>^e n e g a t i v e r e a c t i v U y r e q u i r e m e n s 

of the c o n t r o l p l a t e s . The c o n t r o l p l a t e s (see F i g . D a r e d r i v e n v e r t i c a y 
m opposUe d i r e c t i o n s by m e c h a m s m s l o c a t e d b e n e a t h the r e a c t o r v e s s e l . 

Fig. 3 
Partial Plan View of Inner and Outer Fuel 
Elements Showing Distribution of Fuel and 
Burnable Poison in Fuel Plates 
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During reactor operation, pr imary coolant enters the p re s su re 
vessel at an elevation above the core, flows down through the core , and 
exits beneath the core. The flowrate is about 16,000 gpm, of which 
13.000 gpm flows through the fuel region, the remainder flowing through 
the target , reflector, and control regions. The system is designed to 
operate at an inlet p ressure up to 1,000 psi; however, normal operation 
at 100 MW requires an inlet p ressure of 600 psi. Under these conditions, 
the inlet temperature is 120''F, the outlet temperature is 164°F. and the 
p ressure drop through the core is 100 psi. 

B. Nature of Imposed Loads 

Operating loads on the fuel plates in the HFIR core are imposed by 
thermal gradients and p re s su re . Thermal gradients a re incurred along 
the length of the plates by the variations of reactivity (graded fuel) inside 
the plates and the degree to which coolant flow between adjacent plates af­
fects the situation. P r e s s u r e due to the expanding or contracting coolant 
provides the external t ransverse p ressure on the fuel plates . The bound­
aries also come into play insofar as they res is t radial expansion or con­
traction of the plates. 

In response to the imposed loads, adjacent fuel plates may flex to­
ward or away from each other, and the load paramete rs will change accord­
ingly. This is a coupled transient phenomena, and a true analytical 
representation of all relevant effects is very difficult. Therefore, some 
averaging must be done with the intent of approximating the important design 
parameters . For the first approximation, changes in plate proper t ies , 
various localized effects, and transient loading m general can be neglected. 
The superposition of these effects should be considered after the soundness 
of simpler steady-state solutions has been ensured. 

C. Equilibrium Equations 

Equations of equilibrium conditions can be adapted to the one-
variable, involute shell problem from available expressions in the open 
l i terature. Thus according to Timoshenko,'' the equilibrium conditions, when 
reduced to the one-variable case and corrected to the coordinate system 
shown in Fig. 4, become 

g + N = -pp(e); (1 )̂ 

dM 
d? - PQ = °' . (lb) 

dN ^ „ 
d ? - « = °- (Ic) 
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INVOLUTE • 
GENERATING 
CIRCLE /f 
(INNER / / 
BOUNDARY) / / o 

ENLARGED SECTION 
OF INVOLUTE 

Fig. 4. Model and Nomenclature Used in Analysis 
of the One-variable Involute Shell 

Subs t i t u t ion of E q . ( Ic) into E q . ( la ) 
y i e l d s a s e c o n d - o r d e r o r d i n a r y dif­
f e r e n t i a l equa t ion wi th one unknown 
dependen t v a r i a b l e N: 

N + 0 = -aep(e). (2) 

for wh ich the s t a n d a r d so lu t ion is 

N = Cl s m e + Cz cos 9 + Np. (3) 

The m e m b r a n e load Np is 
the p a r t i c u l a r so lu t ion of Eq . (2) and 

BOUNDARY c a n b e r e p r e s e n t e d m a t h e m a t i c a l l y b y 

Np = i|eieye-ie\(e)de 

/e^^x(e)de|, (4) - e 

w h e r e 

x(e) = -aep(e). 

F r o m E q s . ( Ic ) and (3), the 
e x p r e s s i o n for the s h e a r l o a d b e c o m e s 

Q = Cl cos e - Cz s i n e + T^ (Np) 

(5) 

S i m i l a r l y , f r o m E q s . ( lb ) and (6), the e x p r e s s i o n for the bending 

m o m e n t i s ob ta ined by i n t e g r a t i o n ; th i s y i e ld s 

M C i a ( c o s 9 + e s i n e ) - C2a(sin 6 - 6 cos e) + C3 + Mp (6) 

w h e r e 

Mp = a /^d^(V de. 

T h u s E q s . (3). (5). and (6) p r o v i d e the e x p r e s s i o n s of l oads in the 
involute p l a t e shown in F i g . 4 . T h e y a r e e x p r e s s e d in t e r m s of c o n s t a n t s 
of i n t e g r a t i o n and wi l l be e v a l u a t e d n u m e r i c a l l y f r o m spec i f i ed b o u n d a r y 
c o n d i t i o n s . 
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D. L o a d - d e f o r m a t i o n R e l a t i o n s h i p s 

T h e s e r e l a t i o n s h i p s a r e e s t a b l i s h e d wi th the a id of the s o - c a l l e d 
L o v e - K i r c h h o f f a s s u m p t i o n that n o r m a l s to the m i d d l e s u r f a c e r e m a i n 
s t r a i g h t , n o r m a l , and i n e x t e n s i o n a l du r ing the d e f o r m a t i o n . A l though m a n y 
a u t h o r s in the l i t e r a t u r e on s h e l l s s t a r t w i th th i s a s s u m p t i o n , they i n e v i t a ­
bly end up wi th d i f fe ren t f inal e x p r e s s i o n s . T h i s undoub ted ly is due to the 
r i g o r of the s u b s e q u e n t a n a l y s i s and c o n s e q u e n t s i m p l i f i c a t i o n s of the dif­
f e r e n t i a l e q u a t i o n s . Koi ter^ s t a t e s that m o s t of the v a r i a t i o n s b e t w e e n the 
d i f fe ren t so lu t i ons a r e of the s a m e o r d e r a s t hose of the o r i g i n a l a s s u m p ­
t ion . N e v e r t h e l e s s , it i s i n t e r e s t i n g and i m p o r t a n t to o b s e r v e the d i s c r e p ­
a n c i e s in t e r m s of t yp i ca l n u m e r i c a l d i f f e r e n c e s . T h i s i s r e a d i l y 
a c c o m p l i s h e d by m e a n s of a o n e - v a r i a b l e c a s e , and the invo lu te she l l i s a 
conven ien t con f igu ra t ion b e c a u s e it does not p o s s e s s the o f t e n - e n c o u n t e r e d 
p r o p e r t y of s y m m e t r y . 

A c c o r d i n g l y , the r e l a t i o n s h i p s b e t w e e n the l oads and s t r e s s e s a r e 
g iven by 

•̂  h /z 

-h/z 

0 dz . 

-"h/z 
M = / Oz dz , 

^ - h / z 

(7) 

and the s t r e s s - s t r a i n r e l a t i o n s h i p in a p l ane by 

a = j - 7 ^ [ e - ( l + i ^ ) a T ( z , e ) ] . (8) 

S t r a i n - d i s p l a c e m e n t s r e l a t i o n s have b e e n d e r i v e d by L o v e ' and, due 
to the a s s u m p t i o n s invo lved , a r e l i n e a r funct ions of the t h i c k n e s s c o o r d i n a t e z. 
T y p i c a l l y , 

_ 1 du 1 w z 
^ " p de "̂  1 - (z/p) 7 ' 1 - (z/p) (9) 

w h e r e /c i s the change in s h e l l c u r v a t u r e and is e x p r e s s e d in a v a r i e t y of 
w a y s . 

Change in she l l c u r v a t u r e is the m a i n v a r i a b l e d i s c u s s e d in s u b s e ­
quen t s e c t i o n s of t h i s r e p o r t . A l s o d i s c u s s e d is the a s s u m p t i o n that the r a t i o 
z /p is v e r y m u c h s m a l l e r than uni ty and is t h e r e f o r e n e g l e c t e d . * 

•omission of the r.itio z/p is used by Novozhilov'' as a criterion to differentiate thin shells as opposed to 
thick shells. 
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E. Theoretical Formulations of Shell Curvature 

Since the different equations of «: are the resul ts of many approaches, 
no advantage is gained by presenting the individual solutions m any specific 
order Thus the equations cited are given in the order in which they were 
analyzed. 

1. Timoshenko 

Timoshenko's^ approach in deriving the expression for change 
in shell curvature is an extension of the method used in the study of ordi­
nary strength of ma te r i a l s . In addition, he utilizes the concept of inexten­
sibility and assumes that, during deformation, the radius of curvature is 
reduced by the amount w. This approach yields 

1 d / ^dw\ (10) 

He also assumes that z/p <x 1 m Eq. (9). Therefore, on substituting Eq. (9) 
into Eq. (8) and performing the integrations of Eq. (7), the expressions for 
loads are given by 

I2D 
ah^e 

M 

/du \ . . . (Ua) 

- - 5 - A(^+dwN (Ub) 
- ' a^e' de \" de / T 

where 

rh/z 

N T = r r ; / T(z.e) dz; 
J -h./z 

M-p 
aE / ' 

l -"" / / J -h/z 
zT(z.e) dz. 

Solving for u in Eq. ( l ib ) and substituting it into Eq. (Ha) results 
in a second-order differential equation of the form 
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Substitution of Eqs. (3) and (6) into Eq. (12) and solving it yields the follow­
ing expression for t ransverse deflection of the shell; 

â e 
48D 

48D 

no -^ j ( s in e - e cos e) - 2e^(io sin e - 3e cos e) 

( 3 0 - ^ 1 (cose + e s in 6) - 26^(10 cos 6 +36 sin e) 

where 

and 

• —(e^ - 2) C3 + C4 sin e + C5 cos e + wp, 

l-L'^ /e-isx(e) de - e-is fe'^x(e) dej 

(13) 

x(e) 
a^Fh^ 
D [l2; (Np+Nx) + e(Mp+Mx; 

The slope, or first derivative of w, also can be used to evaluate some of 
the boundary conditions. On differentiation, Eq. (13) yields 

dw _ _a^ 
de ~ 48D 

( 3 0 - ^ ) ( s i n e - e c o s e +9^ sin e) 

26^(30 sin e - 26 cos e + 36^ sin e) Cj 

^ 3 0 - \ ) (cose +6 s i ne +6^ cos 6) 
48D 

OS e) I 26^(30 cose +26 s ine +36^ c 

- ^ e C j + C4 COS 6 - C5 sin 6 +-^(wp) . (14) 

The tangential displacement u is related to w in Eq. ( l ib) and 
ready for straightforward solution in conjunction with Eq. (6). This gives 
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48D 
UQ . i l lVs in e - 6 cos e + e^ sin 9) 

+ 26^(66 s i n e - 2 2 6 cose - 36^ s i n e ) - 384(sine - 6 cos 6)J C, 

( 3 0 - ^ ) ( c o s 6 + e s i n e +9^ cos 6) 

+ 26'(66 cos 6 +226 s ine - 36^ cos 9) - 384(cos6 + 6 sin 6)1 Cj 

a 
48D 

— (6^ - 6) C3 - C4 cos 9 + C5 sin 6 + C4 + Up, (15) 

where 

d I \ il e^(Mp + Mx) de. 

This completes the solution of the one-variable involute shell by 
Timoshenko's formulation. Equations (3), (5), and (6) give the loads m 
te rms of the integration constants Ci, C^, and C3. Equations (13), (14). and 
(15) give the deflections in the same t e r m s , and the additional constants C4. 
C5 and Cj. At this point, the solution is ready for numerical evaluation. 
Since six constants of integration are to be evaluated, and there are two ends 
of the shell , three boundary conditions must be specified for a complete solu­
tion of the problem. • 

2. Modified Timoshenko 

The assumptions of Timoshenko in deriving his expression for/c 
are not really necessary if the definition of s t ram is used in the derivation. 
As given by Timoshenko, the basic definition of the change in curvature is 

^ de + Ad6 j _ 
'̂  " ds + Ads ' P ' 

where s is the a rc length, p the radius of curvature , and A the mcreme 
involved. If the t e rms of the equation are expressed as follows; 

nt 

Ade d'w 
"dp" 

d s . 

de = - ^ d s ; 
P 

Ads = e ds. 
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substituted into the original equation, and the secondary t e rms are can­
celled, then 

1 + e 
]_ l_d_(l dwV 
P p d9\p de) 

which, on use of the binomial expansion, can be rewritten as 

-^[-^feif)] ( l - e + e ^ - . . . ) - - i - . 

The relationship between the strain and displacements, also 
given by Timoshenko, is 

1 /du \ 

"= plde-*j-
Thus on performing the substitution, expanding, and finally neglecting sec­
ondary t e rms , an approximation for the change in curvature is given by 

p [ d e \ p d 6 / p\de ^)\ (16) 

Equation (16) can now be used, as before, to yield load-
displacement relationships. Hence, neglecting the te rms z/p in Eq. (9), 
using it in Eqs. (7) in conjunction with Eq. (16), and adapting the result to 
the involute shell, we obtain 

12D/du \ ^, 
(17a) 

(17b) 

Substitution of the t e rm '^l T^ - wl from Eq. (17a) into Eq. (17b) resul ts in 

an equation involving only w. Hence, 

^(li^) = â fjlL (N 
deVe de/ D [i2a ^ 

+ Nx) - 6(M +Mx) (18) 

On performing the indicated integratipn and multiplying the result by 6, the 
following expression for the slope is obtained; 
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g = - 2 ^ [ 3 ( c o s 6 + e s m e ) - ( e ^ - ^ ) c o s e ] c . 

+ s^ Lsin e - e COS e) - (e^ - ^ ) sin ej Cj 

a ^ 
2D C3 + a6C4 +-d9(*p) (19) 

where 

"P =^ /e / [ iTa(^P+NT)-e (Mp + MT)]d6de. 

Integration of Eq. (19) resul ts in the t r ansverse deflection formula 

^ = .^if^iB + i^Vcose+esine) -6̂ (6 cose + e sin e)Jc, 

+ ̂ r A 5 + - ^ \ (sin e - 6 cos 6) - 6^(6 sin 6 - 6 cos 6)J Cj 

a f̂f aê  — C 3 + — C 4 + C 3 + W P . 
(20) 

Equation (20) thus completes the re la t ionship! required for the boundary 

value problem. 

3. Koiter 

In deriving his load-displacement relationships, Koiter used a 
method of differential geometry as formulated for this purpose by Reissner. 
In this manner the change of curvature became 

= id^[M"^5i)j 
(21) 

Thus on substitutmg Eq. (21) into Eq. (9) and neglecting the te rms z/p the 
expressions for loads can be obtained as in the previous sections. In this 
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N = 
12D /du > , , (22a) 

^pg^—-wj -Nx; 

M = - ^ A f i f , .dwN-l (22b) 
â e de [e \ de/J '• 

Subs t i tu t ion of the so lu t ion for Eq . (22a) into Eq . (22b) r e s u l t s in a s e c o n d -

o r d e r d i f fe ren t i a l equa t ion for u; 

ii[i(" *§)] = 5 [iS .ifeilh"*"-']} - ' ' "*"^ ' ]• '"' 
F u r t h e r subs t i t u t ion of E q s . (3) and (6) in to E q . (23) and p e r f o r m a n c e of 
the ind ica ted i n t e g r a t i o n s r e s u l t in an a l g e b r a i c equa t ion for u; 

8D 
15(cos 6 + e s in e) -6^(6 cos 6 + 6 s in 6) 

+ n T ( ^ ° s e - e s in 6) Cl 
6a^ 

— 15(sin 6 - e cos 6) - 6^(6 s in 6 - 6 cos 9) 
8 D L 

OS e) Cz + -r-z (sin 6 + 6 c 
6a 

j ^ (6^ - 6) C3 + 6C4 + C5 s m e + Ct cos 6 + Up. (24) 

w h e r e 

Up = j : Ue J e-iex(e) d6 - e-ie j eiex(e) del-

and 

x(e) ^{ifad4K^^T)]-^/^(Mp^Mx)de}. 

If the e x p r e s s i o n for w ob ta ined f r o m Eq. (22a) is d i f f e ren t i a t ed and so lved 
in conjunct ion with Eq. (24), the t r a n s v e r s e def lec t ion f o r m u l a b e c o m e s 
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. ± 1 r i5(cos e + e sin 6) - 6^(3 cos 6 - 2 6 sin 6+6^ cos e) 
8D L 

+ - ^ (cos e + e sine -e-̂  cos e) c, 
oa J 

+ - ^ I i5(sin 6 - 6 cos 6) - 6^(3 sin 6 + 26 cos 6 + 9^ sin 9) 
8D L 

+ 7 ^ (sin 6 - 6 cos 6 - 6̂  sin 6) Cz 
6a J 

. 2 i l (02 - 2)C3 + C4 + C5 COS 6 - Ci sin 6 + Wp, (25) 

where 

v2 

•7-r(cos e - e si 
6a 

Differentiation of Eq. (25) yields the slope of the elastic curve: 

^E. = . ^ [9(cos 6 + 6 sin 6) - dHZ cos 9 - 9 sin 6) 
de 8D L 

sin 6)1 Cl ^ 

+ ± ! f [9(sin 6 - 6 cos 6) - 6^(2 sin 6 + 6 cos 0) 
8D L 

- - i ^ (sin 6 +e cos 6) Cj 
6a J 

. l ^ e c 3 - Cosine - c, cose+|g(wp)- (2̂ ') 

This concludes the one-variable involute shell analysis using Koiter 's 

equations. 

4. Fltigge 

The approach of Flugge' in deriving the expression for change 
in shell curvature is s imilar to that of Timoshenko, except it excludes the 
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assumption of inextensibility. Also, it does not provide for the component 
in the change of curvature due to the tangential displacement u. Accord­
ingly, his expression is 

. _ A d ! w (27) 
~ p2 de^-

In the further development of the load-displacement relations Flugge does 
not assume that z / p « 1. Thus, Eq. (9), as defined, is used in conjunction 
with Eqs. (8) and (7) to obtain 

" • - ? ( - * 3 F ) - - T . <^« 

where adjustment to proper sign convention is incorporated. 

In the process of integrating Eq, (9) logarithmic t e rms were 
encountered. In his development, Flugge expanded the logarithms in powers 
of h/p , and neglected the fifth and higher powers to yield Eqs. (28) for the 
one-variable case. According to Fliigge, neglecting the higher powers 
meant only that the rigidity D in these formulas was slightly modified, the 
differences being of the order hyp^. 

Equation (28b) is in t e rms of w alone and explicit solution for 
w is obtained by direct integration of 

w + g f = - ^ ( M + M x ) . (29) 

Thus on substituting Eq. (6) into Eq. (29) and solving it, 

w = I4T5 [15(sin e - 6 cos 6) - 6^(10 sin 6 - 36 cos 6)] Ci 

+ ±1. ri5(cos 6 + 6 sin e) - e^(10 cos 6 + 3 6 sin 6)] Cj 
24D 

. ±i(e2 - 2) C3 + C4 sm 6 + C5 cos 6 + Wp, (30) 

where 

, = 1 jeie j e-iex(e) de - e-̂ e J e'ex(e) dej 
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and 

X(e) = - ^ ( M p + M x ) -

The slope, or first derivative of w, becomes 

, 3 dw ^ _a_ r J 3 , ^ e - e cos e - 6̂  sin 6) + 6 (̂2 cos 6 - 36 sin 6)] C, 
d6 24D '- ^ 

+ _ ^ [l5(cos e + 6 sin e - 6̂  cos 6) - 6^(2 s ine + 36 cos 6)] C^ 
24D '- ^ 

. . ^ C 3 +C4 cos e - C5 sin e + ^ ( w p ) . (31) 

Since the tangential displacement u is related to w by Eq. (28a), substi­
tuting Eq. (6) into it and solving result in 

u = — ri77(sin e - 6 cos 6) - 6^(81 sin 9 - 226 cos 9) 
24D L 

+ (36^ - 2 - ^ j sin e l Cl 

+ _ 2 i r i 7 7 ( c o s e + e sin 6) - 6^81 cos 6 +226 sin 6) 
2 4 D L 

+ (36" - 2 p - ) cos e l Cz 

. ^ f e ^ - 6 + X ) c 3 - C4 cos 6 + C5 sin 6 + C(, + Up, 
3D \ 4a' ' / 

(32) 

where 

Up = / {*P + 115 [ae(Np+NT) - (Mp+Mx)]} d6. 

Equation (32) completes the expressions for the deformations of Flugge's 
formulation and the boundary value problem is ready for solution-

Miller 

In deriving the relationships between loads and displacements 
Miller '" used the differential geometry and obtained a somewhat different 
expression for <; 
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l_r_d_/J_dw\ _u_ 
'̂  ' p L d e V P d e / • p^ 

d £ 
d e 

(33) 

S i m i l a r to F l u g g e , M i l l e r a l s o r e t a i n s a l l t e r m s in Eq . (9) and i n t e g r a t e s 
the c o m p l e t e e x p r e s s i o n . As a r e s u l t , the l o a d - d i s p l a c e m e n t r e l a t i o n s 
b e c o m e 

12D fdu ^ „„< 
N = —5—-S w + C* 

a h ^ 9 \ d e 

r u d / I dwXll 
N x ; (34a) 

(34b) 

w h e r e 

ae / 2 a e + h \ 

When Eq . (34b) is so lved for u and s u b s t i t u t e d into E q . (34a) , 

/ e ( - £ ^ ) ^ ife t < — ' - i ( - c 4 z ' ^ * - c ^ ) ( - - x ) 

+ ̂ ^(M+MT)]. 35 

E q u a t i o n (35) i s in t e r m s of t r i g o n o m e t r i c and l o g a r i t h m i c 
func t ions , and e v a l u a t i o n of u a s b e f o r e b e c o m e s a l m o s t i m p o s s i b l e . How­
e v e r , the l o g a r i t h m i c funct ions can be a p p r o x i m a t e d by a few t e r m s of 
inf ini te e x p a n s i o n s , a s w a s done by Fl i igge in h i s d e r i v a t i o n s . When adap ted 
to the ind iv idua l l o g a r i t h m i c t e r m s of E q . (35), t h e s e a p p r o x i m a t i o n s 
b e c o m e * 

6 dC 
"*" C*2 di 

1 36a2 1 12a^e^ 
1 a ~ C* "• h^ ' C* " ' h 

On i n t r o d u c t i o n of t h e s e a p p r o x i m a t i o n s . Eq . (35) b e c o m e s 

36-^ 

(36) 

(37) 

*The expressions for the regular logarithmic expansions have been modified slightly to make the limiting 

value of the quantity (at 8 - 0) correspond to unity. 
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which y i e ld s 

w = - — [3(5 s in 6 - e cos 9) + 6^(2 s in 6 - 6 cos 6) 

- - r -2 (s in 6 - 6 c o s 6)] Ci 
ba 

. i _ £ [ 3 ( 5 COS e + e s in 6) + 6^(2 cos 6 + 6 s in 6) 
8D 

(cos 6 + 6 s in e) ] Cz 

w h e r e 

and 

2D 
(6^ - 2) C3 + C4 + C5 s in e + Ce, cos 6 + Wp. 

x(e) 

= l.hef^-i9^^e) de - e-'^ j e'^xio) dej 

= - ^ r r j ^ ( N p + Nx) - 3e(Mp + MT) 

+ (Tip-'05|(^p^^T)]de. 

The s lope of the e l a s t i c c u r v e b e c o m e s 

(38) 

dw , . - ^ [ 3 ( 5 s i n e + 36 c o s e + 3 6 ^ s in 6) -6^(2 cos 6 - 6 s in 6) 
de 8D ^ ^ 

- —2 (s in 6 - 6 c o s e + e ' s in 6)] Ci 
6a 

— [3(5 cos e - 36 s in e + 36^ cos 9) + 6^(2 s in 6 + 6 cos 9) 
8D ^ 

—, (cos e + 6 s in e + 6^ cos 6)] Cz 
6a'= 

- ^ C3 + C5 cos e - Ct sin e + — (wp). (39) 
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The t angen t i a l d i s p l a c e m e n t u is ob ta ined by us ing Eq. (34b) in con junc t ion 

with Eq. (36). Subsequent i n t e g r a t i o n g ives 

u = — [ l 5 ( s i n e - e c o s 6 - e ^ s in 6) + 6^(6 cos 6 + e s i n e ) 

^ • ( s i n e + 36 cos 6 + 6^ s in 6)] Ci 
6a' 

+ - 2 - r i5 (cos e + 6 s in e - 6^ cos 
8D ^ ^ 

e'(6 sin 6 - e cos e) 

6a' 

2D 

(cos e - 36 s i n e +e^ COS 6)] Cz 

(e^ - 6 + ^ ) C3 + ec4 - C5 COS 6 + Cfc s in e + up, (40) 

w h e r e 

Up = 6 X ( e ) - f g ( w p ) - ^ ( , - ^ - e ^ ) (Mp + M x ) . 

Equa t ion (40) c o m p l e t e s the o n e - v a r i a b l e involu te she l l a n a l y s i s 
using M i l l e r ' s f o rmu la t i on . 

In s u m m a r y . Table 1 l i s t s the five equa t ions for c u r v a t u r e K. as 
adap ted to the o n e - v a r i a b l e involute she l l . 

TABLE I 

EOUATIONS OF CURVATURE K USED IN DERIVING LOAD-
DISPLACEMENT RELATIONS IN THE ONE-VARIABLE 
INVOLUTE SHELL 

FORMULATION 

FLUGGE 

KOITER 

MILLER 

MODIFIED 
TIMOSHENKO 

TIMOSHENKO 

K 

1 d^w 

p>- dS^ 

1 d 

p dfl 
1 / dw \ 

1 fd /_Ldw_\ _L i£^ 
p \iB\p de ) p^ dS 

P • 
iB\ p iSl P Vd8 ' 

pZ ie \ iB 1 

file:///iB/p
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III. NUMERICAL COMPARISON OF SOLUTIONS 

Two s i m p l e n u m e r i c a l e x a m p l e s w e r e e m p l o y e d for the p u r p o s e of 
c o m p a r i n g the ind iv idua l f o r m u l a t i o n s , u s i n g the o n e - v a r i a b l e m a t h e m a t i c a l 
m o d e l . In the f i r s t e x a m p l e , the s h e l l w a s a c t e d upon by a c o n s t a n t , u n i ­
f o r m , t r a n s v e r s e p r e s s u r e w i t h no t h e r m a l g r a d i e n t s . In the s econd e x a m ­
p le , the she l l w a s s u b j e c t e d to a c o n s t a n t i s o t h e r m a l e x p a n s i o n wi th no 
app l i ed p r e s s u r e b e t w e e n the s t a t i o n a r y b o u n d a r i e s . Tab le 2 l i s t s , in t e r m s 
of cons t an t p and T , the p a r t i c u l a r s o l u t i o n s of the v a r i o u s d i f f e ren t i a l 
equa t ions d e r i v e d in S e c t . II. 

Both e x a m p l e s w e r e subd iv ided into t h r e e p a r t s , e a c h d i s t i n g u i s h e d 
by the type of b o u n d a r y cond i t i ons a s s u m e d . The f i r s t b o u n d a r y condi t ion, 
u sua l l y r e f e r r e d to a s the p inned e d g e s , i s m a t h e m a t i c a l l y r e p r e s e n t e d by 

M M 
i = f 

= 0 . (41) 

The s e c o n d , ident i f ied as the fixed b o u n d a r y condi t ion , is r e p r e s e n t e d by 

e=o 
dw 
de |e=v =* 

dw 
de e=v 

0. (42) 

The t h i r d b o u n d a r y condi t ion t r e a t e d w a s the s o - c a l l e d " r o t a t e d e d g e s . 
H e r e , bo th e n d s of the she l l a r e fixed in the r e g u l a r s e n s e , but a r e a l lowed 
to r o t a t e r e l a t i v e to e a c h o t h e r and wi th r e s p e c t to the c e n t e r of the invo­
lute c i r c l e (see F i g . 4) . M a t h e m a t i c a l l y , th i s b o u n d a r y condi t ion is r e p r e -

sen t ed by 

dw 
de |e=^ 

^w 
9=i/ %-f-'^''\9-f 

dw 
de 
aw = 0. 

(43) 

T h e d i m e n s i o n a l , m a t e r i a l , and load p a r a m e t e r s u s e d in the s a m p l e 

so lu t i ons w e r e ; 

a = 2.72 in. 

h = 0 .039 in. 

Tp = 1.636 r a d 

p = 10.51 ps i 

E = I X 10^ p s i 

V = 0.3 

a = 1.3 X 10 

X = 100°F 

- 5 O T - - 1 

In the f i r s t b o u n d a r y cond i t i ons c o n s i d e r e d , T was a s s u m e d to be z e r o . In 
he s e c o n d P w a s A s s u m e d to be z e r o . T h e s e input p a r a m e t e r s - r e s e ­

l e c t e d to f^cUi ta te c o m p a r i s o n b e t w e e n a n a l y s i s and e x p e r i m e n t a s d e s c r i b e d 
l a t e r in th i s r e p o r t ( see Sec t . IV). 



TABLE 2 

PARTICULAR SOLUTIONS OF THE DIFFERENTIAL EQUATIONS 

^ • \ ^ 5 Y M B 0 L 

FOHMULATION^^v^ 

FLUGGE 

KOITER 

MILLER 

MODIFIED 
TIMOSHENKO 

TIMOSHENKO 

Np 

-opfl 

Mp 

-yo^pfl^ 

Wp 

'-^{.'-.SU..) 

^'[i(»'-'^-»)-&(''-)]--('-O-

^'[,aVeo«^.o-^,(«^.a)].o.(,..)TS 

^r(^«'-5^)-T"('-)-' 

^^^'-H{^'-$i-hy^ 

d 

is^y.,) 

°-^[<^'-)'^]M'-y 

°-^'('«'-i^) *-('-> 

°^V'-9*-('-K 
°i;f'('^»'-'-^)-4-> 

"p 

^[i»'-1'*4)-»]*i"('-K 
4f[ l(. ' - .o«=„ao)-i^3]-o, (,..), 

°^[e'-.os'..o.^{e'.>)^,.a(,,.y{e'-,) 

°^l^-{^'\)th-hM^'-) 

^h(«'-)-("4)]-»('4 
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Each of Eqs . (41) through (43) provides a total of six conditions--
three for eachend of the shell. When the relevant equations of Sect. II are 
subjected to these conditions, six simultaneous algebraic equations result . 
Each equation was programmed for a mat r ix solution in which the individual 
coefficients of the mat r ix could be put in separately. The combined pro­
grams thus provide numerical values of the dependent variables w, u, N, M. 
and Q at different values of the independent variable 6 along the length of 
the shell as the final output. This permi ts the plotting of each of them, as 
in Figs. 6 through 10. 

These graphs show the relative variations in each parameter for 
the five theoretical solutions evaluated. In most solutions, the variation of 
one function with the independent variable 6 is quite similar (amplitude 
provides the pertinent source of comparison). The few exceptions are m-
stances where the slope of the function var ies with 9 from solution to solu­
tion and thus the configuration is not exactly the same. A good illustration 
of this is the displacement configuration for the pinned-edge-boundary 
condition m both examples. The tangential displacement for the isothermal 
load condition, in par t icular , exhibits the most marked deviation m 
configuration. 

Theoretically, the more rigorous the analytical approach, the more 
accurate the resu l t s , other conditions remaining equal. However, the valid­
ity of this statement depends also on the accuracy of the original assunnp­
tions . Koiter^ points out that most of the refinements encountered m shell 
l i terature a re of the same order of magnitude as are the e r r o r s attributable 
to the basic assumptions. Therefore, he presents a set of equations or the 
theory of shells m as simple a form as is consistent with the origmal a s -
sumpUons. In addition, at least for the one- lar iable case, his solution com-
cides with that of Love,^ Novoshilov,' Re i sse r , ' and Sanders , " ° - - ; -
few It IS on this bas is that Koiter 's solution was chosen as a reference for 
numerical comparison with the other four solutions. 

Table 3 lists for both sample problems the percentage of deviations 
at maximum values of the dependent variables employe.! ^-'"^1^°'^°^?^^^ 
Where appearing, the minus sign indicates the value is less than t l^t given 
m the KoUer sofution. (Accuracy of the tabulated values is within 0.1%.) 
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Deviations (in %l of four Solutions ot Sample Problems Irom Results O b t a i r i e d « i t M < o i t e r ^ ^ 

Method 

Miller 

Timoshenko 

Miller 

Mod. Timoshenko 

Timoshenko 

Legend 

Transverse 
Deflection 

to) 

PES 

12.0 

- 01 

- 3.3 

11.5 

-17.7 

- 1.2 

- 1.4 

-16.6 

PES - Pinned end supports. 
FES - Fixed end supports. 
RES - Rotated end supports. 

FES 

- 8.9 

02 

- 1.0 

-13.1 

02 

06 

09 

0.0 

RES 

lA) 

-14.? 

no 
- 2.5 

-13.1 

2.0 

4.1 

5.6 

0.2 

PES 

Tangential 
Deflection 

(ul 

FES RES 

Shell Acted Upon by a 

22.8 

0,0 

-4.2 

23.9 

-20.7 

OO 

- 1.3 

-14.8 

-28.1 

OO 

- 2.7 

-13.1 

Membrane 
Load 
(Nl 

PES FES RES PES 

Uniform Transverse Pressure 

-0.3 

00 

OO 

-03 

2.3 

0,0 

-0.3 

2.6 

6.3 

0.1 

-5.7 

6.3 

(Bl Shell Restrained from Isothermal Expans 

47.7 

2,1 

-0.7 

43.9 

- 0.6 

- 0.8 

- 1.7 

- 03 

2.0 

3.8 

5.4 

OO 

-5.0 

-1.5 

-1.3 

-3.5 

22.0 

3.8 

8.0 

19.7 

1.0 

-2.3 

-3.3 

2.5 

- 0.9 

0.1 

- 0.4 

- 08 

ion 

-500 

-14.9 

-12.8 

-34.8 

Bending 
Moment 

(M) 

FES 

25.1 

0.0 

-1.9 

27.5 

56.4 

10.5 

13.8 

49.0 

RES 

30.0 

OO 

- 4.0 

30.0 

18.4 

-42.9 

-69.0 

50.7 

PES 

- 03 

- 0.1 

- 0.2 

- 0.3 

-50.1 

-15.2 

-12.8 

-34.9 

Shear 
Load 
(Q) 

FES 

5.4 

- 0 1 

-0.4 

6.7 

24.7 

4.2 

8.5 

22.3 

RES 

- 6.5 

01 

- 6.5 

lU.l 

-23.5 

-33.1 

24,6 

IV. CONCLUDING REMARKS 

At the outset, it is emphasized that the five solutions analyzed do 
not represent the entire spectrum of applicable solutions to all problems 
of involute plates. Neither is it maintained that the numerical evaluations, 
in any way, reflect the veracity of a particular theory treated. At best , 
the given solutions provide what may be called a typical variation in r e ­
sults, depending on the load and boundary conditions employed. If any con­
clusion could be drawn from the comparison it probably would be that, in 
general, the results obtained using Timoshenko's and Fltigge's formulations 
are similar , and those obtained using the other three theories a re also 
similar . A more meaningful comparison of the formulations would necess i ­
tate a thorough parametr ic study, with complete experimental support. 

However, it should be pointed out that in the one-variable shell 
problem where at one end p = 0, retention of the z/p t e rms (as compared 
with unity) did not reflect any noticeable difference in the final resul t s . 
For example, Flugge's or Mil ler 's equations, which did not neglect the z/p 
t e rms , provided results in close agreement with those rendered by theories 
which did. These observations suggest that for flexural analysis of the 
two-variable, cylindrical involute shell problem, the simplest theory, say 
the linear shell theory of Koiter or Novozhilov, should be used. 

An important byproduct of this study may well be the simple method 
employed in solving the pertinent differential equations. This closed-form 
solution may be used for quantitative comparisons, since the one-
dimensional model still retains many of the relevant character is t ics of 
interest . 
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V. COMPARISON WITH EXPERIMENTAL DATA 

Oftentimes experimental data are available for purposes of compari­
son with analytical solutions, but may not always completely represent the 
study at hand. Such is the case with the two sets of data furnished by the 
staff at ORNL, and allowances must be made accordingly. 

The first set of data* consisted of displacement measurements on a 
simulated involute plate specimen, with pinned {or grooved) ends, subjected to 
uniform t ransverse p r e s s u r e s . (The shape of the test specimen was not a 
true involute since the ends had straight extensions, each about l /8 in. long.) 
More specifically, the specimen was fabricated of Type 6061-T6 aluminum 
sheet, 0.039 in. thick, the cord of which was 3.372 in. long. P r e s s u r e s of 
3.63, 5.60, 8.54, and 10.51 psi were applied, and corresponding displacements 
were measured at seven stations by dial indicators positioned perpendicular 
to the cord of the involute. The equivalent analytical shape used for com­
parison is described by the input conditions on page 25. 

The resul ts of this comparison are summarized and replotted in 
Fig. 11. This IS essentially a two-dimensional plot, where the experimental 
t ransverse and tangential displacements have been accounted for. The dis­
placement scale also was normalized by plotting w/p and u /p , where p is 
the test p r e s su re . This normalization permitted inclusion of all p ressure re ­
sults on the same graph. Since the analytical solutions can be divided into 

ANGULAR COORDINATE ( d ) , rod 

0.4 0 6 O.e 10 I I 1 2 1 5 I * 

10 11 I z ' ' 
ANGULAR COORDINATE ( e l , r o d 

Fig. 11. Comparison of Experimental Data with Analytical Results for 
Shell with Pinned Edges and Subjected to Uniform Pressure 

• Personal communication from T. G. Chapman, ORNL. 
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two groups insofar as agreement between them is concerned, Koiter 
Timoshenko's solutions have been plotted for comparison. ^^^'"^ ""'^J 
ment with the experimental results is quite apparent; however ot 
solutions, that rendered by Koiter 's formulation is in somewhat closer 
agrement with experiment. 

The second set of data was derived by Cheverton and Kelley, ' who 
conducted a ser ies of experiments on plates of the HFIR outer fuel element. 
Structurally, each test specimen was a cylindrical, aluminum involute 
plate, 0.050 in. thick, with a generating circle of 5.873 m., a true active 
width (arc length) of 2.944 in., and an axial length of 24 m. 

Numerous variables, such as types of mater ia l , res t ra in ts of the 
side supports, and type of load, were considered in these tes ts . One of the 
test objectives was to reproduce, as closely as possible, the true s t ructural 
loads and restraints on the plates. For example, the higher temperature 
environment of the plate, as compared to its restraining boundaries, was 
simulated by effectively imparting an axial shear load on the sides of the 
plate. Figure 12 shows the maximum transverse deflection incurred along 
the cylinder axis under these conditions. In tests where p ressu re was to 
be applied to the plate surface, the entire per imeter of the plate was sealed. 
The mode of sealing prevented the ends of the plates from deforming under 
load, as they would under actual operating conditions. 
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Fig. 12. Typical Deformation along Cylindrical Axis of a Free-ended Involute 
Plate Caused by a Uniform Change in Temperature (80-400°F) 

In view of the m u l t i v a r i a b l e n a t u r e of the t e s t s , it w a s a p p a r e n t 
that the r e s u l t s could not be c l o s e l y s i m u l a t e d by a o n e - v a r i a b l e a n a l y t i c a l 
m o d e l . H o w e v e r , it was b e l i e v e d that a r e a s o n a b l e c o m p a r i s o n could be 
m a d e wi th d i s p l a c e m e n t s m e a s u r e d along the involute and at the m i d l e n g t h 
of the p l a t e s (see F i g . 12). A c c o r d i n g l y , da ta d e r i v e d f r o m cond i t ions of 
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fixed edges of the plate were selected. In these tes t s , the plate tempera­
ture was increased from 80 to 400°F, with no pressure differential; at 
400°F, p re s su re was applied to the plate surface. 

The resul ts of the comparisons are plotted in Figs. 13 to 15 Here 
again, the analytical resul ts were derived using the Timoshenko and Koiter 
formulations, and the physical propert ies of aluminum at elevated tem­
pera tures as published in Sect III of the ASME Boiler and P r e s s u r e Vessel 
Code Figure 13 shows the plate deformation caused by the isothermal 
temperature change from 80 to 400°F, The configuration of deformation is 
s imilar to that determined analytically, but the quantitative values do not 

ANGULAR COORDINATE ( 0 ) . rod 

0 e 0 £ 

ANGULAR COORDINATE ( f i ) . rOd 

Fig. 13. Deformation of Involute Plate Caused by an 
Isothermal Temperature Ctonge (80-400OF) 

ANGULAR COORDINATE ( f i ) , r ad 

0 6 

ANGULAR C0ORD«ATE ( f i ) , rod 

Fig. 14. Plate Deformation Caused by an Isothermal Temperature 
Change (80-400°F) and a Uniform Pressure of 30 psi 
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ANGULAR COORDINATE ( 9 ) . rod 

ANGULAR COORDINATE ( f l J . r o d 

Fig. 15. Plate Deformation Caused by a Uniform 60 psi Pressure 
at a Temperature of 400OF 

a g r e e we l l . The s a m e t r e n d s of the to ta l d e f o r m a t i o n o c c u r in F i g . 14, 
w h e r e a 30-ps i p r e s s u r e has been app l ied to the concave s ide of the 
t e m p e r a t u r e - d e f o r m e d p l a t e . F i g u r e 15 shows the p la te d e f o r m a t i o n due 
only to a un i fo rm t r a n s v e r s e p r e s s u r e of 60 p s i app l i ed to the p l a t e at a 
t e m p e r a t u r e of 400°F. H e r e again the p la te d e f o r m a t i o n r e n d e r e d by e x ­
p e r i m e n t and ana lys i s is s i m i l a r in conf igura t ion but not in m a g n i t u d e . 

It i s a p p a r e n t f rom t h e s e f igu res that a n a l y s i s p r e d i c t s d e f o r m a ­
t ions that cons i s t en t l y differ by a fac tor of 2 f r o m those d e t e r m i n e d e x p e r i ­
m e n t a l l y . Of p a r t i c u l a r i m p o r t a n c e is the fact that the a n a l y t i c a l l y d e r i v e d 
de fo rma t ions due to t r a n s v e r s e p r e s s u r e (see F i g . 15) a r e n o n c o n s e r v a t i v e ; 
p r e d i c t e d p la te def lec t ions a r e lower than those m e a s u r e d e x p e r i m e n t a l l y . 
M o r e o v e r , th is i s the only i n s t a n c e w h e r e the e x p e r i m e n t a l da ta show the 
a n a l y s i s to be n o n c o n s e r v a t i v e . The dev ia t ion cannot be exp l a ined by 
s imp ly r e l ax ing some of the r e s t r a i n t s i m p o s e d at the p la te b o u n d a r i e s , 
s ince th i s would have the oppos i te effect . A m o r e c o m p r e h e n s i v e i n v e s t i ­
ga t ion m a y p rov ide a p l a u s i b l e exp lana t ion . 
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